The pH regulation has a fundamental role in several intracellular processes and its variation via exogenous compounds is a potential tool for intervening in the intracellular processes. Proton caged compounds (PPCs) release protons upon UV irradiation and may efficiently provoke intracellular on-command acidification. Here, we explore the intracellular pH variation, when purposely synthesized PCCs are coupled to gold nanoparticles (AuNPs) and dosed to HEK-293 cells. We detected the acidification process caused by the UV irradiation by monitoring the intensity of the asymmetric stretching mode of the CO2 molecule at 2343 cm− 1. The comparison between free and AuNPs functionalized proton caged compound demonstrates a highly enhanced CO2 yield, hence pH variation, in the latter case. Finally, PCC functionalized AuNPs were marked with a purposely synthesized fluorescent marker and dosed to HEK-293 cells. The corresponding fluorescence optical images show green grains throughout the whole cytoplasm.
Exogenous control over intracellular acidification: Enhancement via proton caged compounds coupled to gold nanoparticles / Carbone, Marilena; Sabbatella, Gianfranco; Antonaroli, Simonetta; Remita, Hynd; Orlando, Viviana; Biagioni, Stefano; Nucara, Alessandro. - In: BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS. - ISSN 0304-4165. - STAMPA. - 1850:11(2015), pp. 2304-2307. [10.1016/j.bbagen.2015.07.011]
Exogenous control over intracellular acidification: Enhancement via proton caged compounds coupled to gold nanoparticles
SABBATELLA, GIANFRANCO;ORLANDO, Viviana;BIAGIONI, Stefano;NUCARA, Alessandro
2015
Abstract
The pH regulation has a fundamental role in several intracellular processes and its variation via exogenous compounds is a potential tool for intervening in the intracellular processes. Proton caged compounds (PPCs) release protons upon UV irradiation and may efficiently provoke intracellular on-command acidification. Here, we explore the intracellular pH variation, when purposely synthesized PCCs are coupled to gold nanoparticles (AuNPs) and dosed to HEK-293 cells. We detected the acidification process caused by the UV irradiation by monitoring the intensity of the asymmetric stretching mode of the CO2 molecule at 2343 cm− 1. The comparison between free and AuNPs functionalized proton caged compound demonstrates a highly enhanced CO2 yield, hence pH variation, in the latter case. Finally, PCC functionalized AuNPs were marked with a purposely synthesized fluorescent marker and dosed to HEK-293 cells. The corresponding fluorescence optical images show green grains throughout the whole cytoplasm.File | Dimensione | Formato | |
---|---|---|---|
Carbone_Exogenous_2015.pdf
solo gestori archivio
Note: versione pubblicata
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
530.61 kB
Formato
Adobe PDF
|
530.61 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.